the History of the Future of the Bayesian Brain

Jawook Gu Dept. of Bio and Brain Engineering, KAIST

2015/05/20

Author

Karl J. Friston

- British neuroscientist
- Major in brain imaging
- ▶ Famous for <u>Statistical parametric mapping</u> (SPM)

Contents of paper

- Introduction
- ▶ The Bayesian brain
- Prehistory: functional integration club
- ▶ History: optimality, natural selection and value
- The Bayesian paradigm
- Bayesian brain & optimization
- Epilogue

Contents of paper

- Introduction
- ▶ The Bayesian brain
- Prehistory: functional integration club
- History: optimality, natural selection and value
- The Bayesian paradigm
- Bayesian brain & optimization
- Epilogue

(1994)

Characters

Samir Zeki

Gerry Edelman

Horace Barlow

Graeme Mitchison

. . . .

Wooldice

Contents of presentation

- About paper
 - Author
 - Contents of paper
 - Character
- Background knowledge
 - Bayesian statistics
 - Bayesian optimal classifier
- Part I:The rise of Bayesian thinking
 - Functional segregation and integration of brain
 - The notion of optimality
- Part II:The Bayesian Brain
 - Optimal decision
 - Value learning

Background knowledge:

Bayesian statistics

Bayesian statistics

- Classical definition of probability
 - Frequency
 - $P(event) = \lim_{n \to \infty} \frac{number\ of\ the\ event}{number\ of\ trial}$
 - ▶ How to get P(event) when n = 1?
- Bayesian probability
 - Calculate the probability using data, logic, and hypothesis
- Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}.$$

Bayesian optimal classifier

$$y = \operatorname{argmax}_{c_j \in C} \sum_{h_i \in H} P(c_j | h_i) P(T | h_i) P(h_i)$$

- C_j = class, h_i = Hypothesis, T: training set
- No other classifier can overcome Bayesian optimal classifier.

Bayesian optimal classifier

$$y = \operatorname{argmax}_{c_j \in C} \sum_{h_i \in H} P(c_j | h_i) P(T | h_i) P(h_i)$$

▶ C_j = class, h_i = Hypothesis, T: training set

Prior probability: P(h)

y = arg max P(.)

Part I:

The rise of Bayesian thinking

Functional segregation / integration

- Regionally specific activations
 - Statistical parametric mapping
- Interactions mediated by effective connectivity
 - Dynamic causal modeling

Notion of optimality

- Brain is optimal in some sense.
 - What is optimized?
 - Information theory: Bayes optimal
- Bayes brain
 - Optimal decision theory
 - Value learning

Part II:

The Bayesian brain

Bayesian brain

- Information theory
 - maximize the mutual information between sensory input & internal representations
- Value learning /selection
 - value or adaptive fitness
- Free energy minimization
 - marginal likelihood of a model
- All 3 processes are same thing
- Self organizing system (brain) minimize entropy

Epilogue

Further research of Bayesian brain

-Top-down predictions suppress errors of bottom-up prediction:

example of minimizing free energy

Research of neuronal infrastructures:
functional integration
effective connectivity
dynamic causal modeling
Bayesian evidence based modeling

