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A Method for Determinism in Short Time Series, and its
Application to Stationary EEG

Jaeseung Jeong*, John C. Gore, and Bradley S. Peterson

Abstract—A novel method for detecting determinism in short time se-
ries is developed and applied to investigate determinism in stationary elec-
troencephalogram (EEG) recordings. This method is based on the obser-
vation that the trajectory of a time series generated from a differentiable
dynamical system behaves smoothly in an embedded state space. The an-
gles between two successive tangent vectors in the trajectory reconstructed
from the time series is calculated as a function of time. The irregularity
of the angle variations obtained from the time series is estimated using
second-order difference plots, and compared with that of the corresponding
surrogate data. Using this method, we demonstrate that scalp EEG record-
ings from normal subjects do not exhibit a low-dimensional deterministic
structure. This method can be useful for analyzing determinism in short
time series, such as those from physiological recordings.

Index Terms—Determinism, smoothness, stationary EEG, time series.

I. INTRODUCTION

An important problem in the study of a periodic and apparently ir-
regular time series is determining whether the time series arises from
a stochastic process or has deterministic component that is generated
from chaotic dynamics having finite degrees of freedom. Whether a
time series has a deterministic component or not in turn dictates what
approaches are appropriate for investigating the time series and its gen-
erating system.

Several methods of nonlinear dynamical analysis have previously
been developed to detect determinism in time series [1]–[5]. These
methods are all based on the assumption that a trajectory in the state
space reconstructed from a deterministic time series behaves similarly
to nearby trajectories as time evolves. Thus, a large number of data
points are required to have sufficient information on nearby trajectories
to compare their future behaviors. In addition, the application of these
methods can lead to spurious results, if the time series under study is
nonstationary. Furthermore, acquiring this large number of data points
from a stationary time series is almost impossible when working with
real biological systems.

The aim of this study is to develop a method for detecting deter-
minism in short time series, and then apply it to stationary segments
of an electroencephalogram (EEG) record. The method is based on
the observation that successive tangent vectors in the trajectory of an
attractor evolve smoothly in state space when the time series from
which it has been reconstructed has been generated by a differentiable
dynamical system. The validity of the assumption that is central to
our approach—the first differentiability of the attractor’s trajectory
is useful in the detection of determinism—has been mathematically
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proved using a measure-based approach by Ortega and Louis [6]. It
has been shown that statistical differentiability of the natural invariant
measure along the reconstructed trajectory implies smoothness or
determinism in a time series. An advantage of this method is no
requirement of an excessively large number of data points, because
the entire attractor is not needed to be constructed in order to measure
the variability of its component trajectories.

II. M ETHODS

A. Algorithm for Detecting Determinism

Let an observed time seriesx(t) be the output of a differentiable dy-
namical systemf t on anm-dimensional manifoldM . First, a one-di-
mensional timex(t) series is transformed into a multidimensional state
space. To unfold the projection back onto a multivariate state space that
is a representation of the original system, we use the delay coordinates
[7]

~X(t) = [x(t); x(t+ T ); . . . ; x(t+ (d� 1)T )] (1)

from a single time seriesx(t) after performing an embedding proce-
dure.X(t) is one point of the trajectory in the state space at timet,
x(t + iT ) are the coordinates in the state space corresponding to the
time-delayed values of the time series,T is the time delay between the
points of the time series considered, andd is the embedding dimension.

Our test for determinism in a time series is predicted upon assessing
the smoothness of a trajectory in state space of the attractor that has
been reconstructed from the time series. The trajectory of its attractor
should evolve smoothly because the differentiability of the original
system is preserved in state space. Thus, the angles between successive
tangent vectors that are tangential to the trajectory should vary slowly,
whereas the directions of tangent vectors reconstructed from stochastic
time series should be random, even if they are auto-correlated.

Next, the angles between successive tangent vectors are iteratively
measured along the trajectory in state space. We define the tangent
vector of a trajectory in the state space as follows:

~Y (t) = ~X(t+ 1)� ~X(t): (2)

Then the angles between successive tangent vectors are computed by

R(t) =
~Y (t+ 1) � ~Y (t)

~Y (t+ 1) ~Y (t)
: (3)

R(t) is the cosine function of the angle between successive tangent
vectors. AnR value of unity indicates that the successive tangent vec-
torsY (t + 1) andY (t) are parallel. The value ofR decreases as the
angle between successive tangent vectors increases. It was verified that
R(t) was not more sensitive to the presence of noise than angles them-
selves.

Although the absolute value of the angles between tangent vectors
depends on the correlation of the time series, the regularity of the an-
gles may reflect smoothness, and consequently determinism of the time
series [6]. Fig. 1(a) and (b) demonstrates, for example, that theR(t)
between successive tangent vectors for the Lorenz time series [_x =
10(y � x); _y = 28x� y � xz; _z = �(8=3)z + xy x = 10(y � x)]
(a sampling timet = 0:01, the number of data points of 2000, an em-
bedding dimension of seven, and a time delay of 15) behaves more
smoothly than that for stochastic time series having an identical power
spectrum [8].

Next, a second-order difference plot and a central tendency measure
are used to quantify the irregularity, or angle variations, of the suc-
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(a)

(b)

Fig. 1. The angle series of the successive tangent vectors of the trajectory in
the state space reconstructed from (a) the Lorenz data (2000 data points) and
(b) those from their surrogate data as a function of time with an embedding
dimension of seven and a time delay of 15.

cessive tangent vectors along the trajectory. The second-order differ-
ence plot (SODP) is a graphical representation of the rate of variability:
(Rn+2�Rn+1) versus (Rn+1�Rn), as proposed by Cohenet al.[9].
The central tendency measure (CTM) provides a rapid quantitative es-
timate for the variability in the SODP. The CTM is computed by the
average length of the points from the origin in the SODP

CTM =
1

N � 2

N�2

n=1

(Rn+2 �Rn+1)2 + (Rn+1 �Rn)2 (4)

whereN is the total number of points. The larger CTM of the angle
variations, the less smooth is the attractor’s trajectory. The index of
smoothness of the trajectoryS is defined as a ratio of the CTM of the
angle variations of the successive tangent vectors for the original time
series to that for its surrogate data. It is an effective measure for smooth-
ness of the trajectory and, thus, for determinism in the time series.

The method of surrogate data is used to help detect nonlinear deter-
minism. The surrogate data are linear stochastic time series that have
the same power spectra as the raw time series. They are randomized to
ensure the absence of any deterministic nonlinear structure. We use “it-
eratively refined surrogate data,” which have the same autocorrelation
function, Fourier power spectrum, and probability distribution as the
original time series [8]. The end-point mismatch measuredjump and
the mismatch in the first derivative are also used to minimize spurious
high-frequency component due to a discontinuity between the begin-
ning and end of the segment. More detailed algorithms used in this
study are present in the paper of Schreiber and Schmitz [8].

Fig. 2(a) and (b) presents the SODPs of the angles between succes-
sive tangent vectors for the Lorenz data and its surrogate data. The

(a)

(b)

Fig. 2. Second-order difference plots of the angle series from successive
tangent vectors of the trajectory in (a) the Lorenz data and (b) their surrogate
data.

SODP for the Lorenz data with low variability have points clustered
around the origin, whereas the SODP for their surrogate data have a
much large distribution of points, indicating high variability of succes-
sive tangent vectors. The CTM values for the Lorenz data and their
surrogate data in this figure are 0.002 and 0.035, respectively. We gen-
erate 20 surrogate data from the Lorenz data to test the stability of the
CTM values of the surrogate data. Studentt-tests show that the CTM
value for the Lorenz data is significantly different from mean CTM
values for its surrogate data sets (Table I). The mean ofS for the Lorenz
data is 0.057� 0.002, indicating that the Lorenz data are very smooth
(p < 0:0001).

This method is applied to the Rössler data and Van der Pol data
as well. The Rössler time series is derived from thex-component of
Rössler equations [_x = �z�y; _y = x+0:15y; _z = 0:2+z(x�10)]
with sampling timet = �=100. The SODP for 2000 Rössler data points
is estimated using an embedding dimension of seven and a time delay
of 44. The Van der Pol time series is taken from thex-component of
Van der Pol equations [_x = y; _y = 5y(1�x2)�5x; _z = 1] with sam-
pling time�t = 1=100. The CTM for each time series differs signifi-
cantly from the CTMs of their corresponding surrogate data (Table I),
indicating that the attractors reconstructed from the original time series
have much smoother trajectories in state space than do the time series
reconstructed from their surrogate data.
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TABLE I
THE COMPARISON OF THECENTRAL TENDENCY MEASURES OF THEORIGINAL TIME SERIES(CTM ) FROM DIFFERENTDYNAMICAL SYSTEMS AND

THEIR SURROGATEDATA (CTM )

TABLE II
THE COMPARISON OF THECENTRAL TENDENCY MEASURES OF THELORENZ DATA (CTM ) IN THE PRESENCE OFVARIOUS LEVELS OFWHITE

NOISE AND THEIR SURROGATEDATA (CTM ) WITH d = 5 AND T = 10

To examine the applicability of this method to high-dimensional
systems, the smoothness of the high-dimensional time series is esti-
mated [10]. The data are generated from nonlinear coupled equations
( _x1 = x2, _x2 = ((x5 � 25)=3) sin 30t+ 3x7 sin 65t+ x11 sin 80t�
3jx6jx2 � x9x1) of 12 variables including the Lorenz equation (_x3 =
10(x4 � x3); _x4 = �x3x5 + 28x3 � x4; _x5 = x3x4 � (8=3)x5),
the Ueda equation (_x6 = x7; _x7 = �0:1x7 � x36 + 12 cos 1t),
the two-well potential Duffing–Homes equation (_x8 = x9; _x9 =
0:15x9 + 0:5x8(1 � x28) + 0:15 cos 0:8t) and the Rössler equa-
tion ( _x10 = �(x11 + x12); _x11 = x10 + 0:15x11; _x12 =
0:15 + x12(x10 � 10)). The high-dimensional signal is found to have
smoother trajectories than its surrogate data (Table I), demonstrating
the relevance of this method for the assessment of determinism in
high-dimensional dynamical systems.

In addition, the ability of the method to avoid the false positive des-
ignation of determinism for auto-correlated noise is tested. We use a

sequence of numbers that is generated by tossing imaginary dice suc-
cessively and that produces1=f noise, as shown by Gardner [11]. The
detailed algorithm is demonstrated in Jeonget al. [12]. The resulting
sequence of sums is auto-correlated, with a power spectrum having a
1=f distribution at the range of about 10–30 Hz. Both the original and
surrogate time series exhibit a large variability in their SODPs. The sur-
rogate data have a somewhat higher SODP variability, but the CTMs for
the1=f noise and its surrogate data do not differ significantly (Table I).

Furthermore, the applicability of this method to deterministic sys-
tems in the presence of noise is investigated, because most experi-
mental data from physiological systems are corrupted by noise. As the
level of white noise added increased up to 100%, significant differences
of CTMs between the Lorenz data and their surrogate data are detected
but decreased. However, no significant difference of the CTMs is found
in the presence of 200% white noise (Table II). It suggests that this
method should be used with much caution to examine noisy real sys-
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(a)

(b)

Fig. 3. Stationarity of the EEG. (a) The mean and (b) variance value for bins
(bin size: 1s) for an EEG record atF from a subject.

tems, because very large amounts of noise can be lead to spurious, false
negative results. The application of nonlinear noise-reduction methods
prior to assessing smoothness might be useful in obtaining more reli-
able results.

From these considerations, we propose an empirical criterion for es-
tablishing determinism in practical applications: ifS of a time series
is near 0 or smaller than 0.3, then the time series is deterministic. IfS

is close to 1 or larger than 0.7, then we conclude that the time series is
stochastic. The intermediate case, with0:3 < S < 0:7, is known to
sometimes arise from deterministic time series. SinceS is an informal
measure, we suggest that a statistical analysis should compare the CTM
of the original time series with those of their 20 surrogate data. In a later
practical example, we also use a t-test to compare the CTM of an EEG
record with the CTMs of 20 surrogate data sets.

B. Subjects and EEG Data Acquisition

Scalp EEGs were recorded in a conventional fashion from 20 normal
subjects (9 male and 11 females) having a mean age of 31.3� 4.2
years. A 12-bit analog-to-digital converter digitized the signals from
20 monopolar electrodes that employed the International Federation
10–20 EEG reference system with a bimastoidean reference point. With
the subjects in a relaxed state with eyes closed, EEG data (1 min, 15 000
data points) were recorded with a sampling frequency of 250 Hz. The
data were high-pass filtered at 0.5 Hz and then low-pass filtered at
35 Hz. Recordings were made under an eyes-closed condition to ob-
tain as many stationary epochs of EEG recording as possible. Poten-
tials from 16 channels (F7, T3, Fp1, F3, C3, P3, O1, F8, T4, T5, T6,
Fp2, F4, C4, P4, andO2) referenced against “linked earlobes” were
amplified on a Nihon Kohden EEG-4421K recording unit using a time

(a)

(b)

Fig. 4. The angle series over time from successive state vectors of the
trajectory in the state space reconstructed withd = 8 andT = 10 for (a) a
stationary EEG recording and (b) its surrogate data as a function of time.

constant of 0.1s Each EEG record was judged by inspection to be free
from electrooculographic and movement artifacts and to contain min-
imal electromyographic (EMG) activity.

C. Assessment of Stationarity

To assess the presence of determinism in stationary EEGs, we first
selected stationary segments of the EEG record for analysis. The par-
ticular EEG epochs that would be used to assess determinism in the
EEG record were selected using a criterion of the second-order weak
stationarity, i.e., constant mean and variance with the autocorrelation
depending only on the time difference.

We assessed the stationarity of time bins consisting of 250 data
points (a duration of 1 s). First, the mean and variance for each bin
were calculated, and then zones where these values did not change
significantly for at least two consecutive bins were searched. Then
whether the autocorrelation of the segment is dependent on time
difference alone or not was checked. Next, we compared the statistical
parameters of the total time series with those of the previously selected
segment. If the differences between these statistical parameters were
significant at a probability value<0.05, we discarded the corre-
sponding segment. This procedure was followed to ensure that the
selected segment represented the dynamics of the entire time series.

III. RESULTS

Since one segment of stationary EEG was selected from each
channel, 16 segments were obtained from each subject (the total
number of stationary segments used: 320). The mean number of data
points of the selected EEG segments from 16 electrodes of 20 subjects
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TABLE III
THE COMPARISON OF THECENTRAL TENDENCY MEASURES OF THEEEG DATA AT 16 ELECTRODES(CTM ) AND THEIR SURROGATEDATA (CTM )

was 1525� 245. In Fig. 3(a) and (b), we present a typical example of
the mean and variance for each bin of the EEG record from a subject
at F3. The mean (and standard deviation) value for the entire EEG
record in this case was 127.39� 2.63. The means and variances were
stable from bin seven to bin nine satisfying the weak stationarity
criteria. The autocorrelation of each segment as a function of only the
time difference was confirmed.

Then the attractor for the stationary EEG segments was recon-
structed using the embedding procedure. The smoothness of the
attractor reconstructed from the short stationary EEG segments
exhibited stable behavior and did not critically depend on embedding
parameters for10 < T < 30 and8 < d < 12 for the EEG. Thus,
T was chosen to be ten lags, andd was set to eight. Fig. 4(a) and (b)
shows the angle variations of the successive tangent vectors of the
trajectory reconstructed from a stationary EEG segment and of those
reconstructed from its surrogate data. The angle variations for the
stationary EEG were as irregular as those for the surrogate data. Both
SODPs of the angle variations for the stationary EEG and the surrogate

data exhibited large variability and were similarly distributed. As
shown in Table III, the mean values of the CTMs for the stationary
EEG and their 20 corresponding surrogate data for 20 subjects were
not significantly different at each channel. The meanS values greater
than 0.7 found in stationary EEGs indicates that the trajectories of
the EEG in state space were not as smooth as those for stochastic
time series having identical power spectra (Table III), suggesting no
determinism within it.

IV. DISCUSSION

A method for identifying whether a short time series is deterministic
or not is developed. We demonstrate that the method properly
identifies the nature of several well-characterized dynamical systems
and stochastic systems. When applied to a short sample of stationary
EEG recordings, our results indicate that the stationary EEG record has
minimal smoothness. These results suggest that scalp EEG recordings
from normal subjects do not exhibit a low-dimensional deterministic
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structure. However, there is a possibility that large amounts of noise,
either from measurement artifact or intrinsic noise sources within
the brain, may have interfered with our ability to detect determinism
in the EEG.

Our EEG findings are in agreement with several previous studies
[10], [13], [14]. Blinowska and Malinowski have applied the Sugi-
hara–May method to EEG recordings and reported that predictions
using this method are similar to those using a linear autoregressive
method [13]. Glass and his colleagues have employed the Ka-
plan–Glass method for deterministic dynamics for an EEG and found
that real EEG record is not deterministic [14]. A more recent study
performed by Jeonget al. [10] has examined determinism within the
EEG by detecting the parallelness of nearby trajectories in state space
reconstructed from the noise-reduced EEG after the use of a nonlinear
noise reduction method. Compared with trajectories for its surrogate
data, those for noise-reduced EEG data do not yield evidence for
low-dimensional determinism.

Our novel method measures the smoothness of an attractor’s trajec-
tory. Thus, it is not applicable to map-type data such as interspike inter-
vals of neuronal signals,R–R intervals of electrocardiograms, or other
extremely-low-sampled data. The smoothness of the trajectory may de-
pend on the sampling frequency of the data. However, in our experi-
ence, the difference between the CTMs of the original time series and
its surrogate data is not critically sensitive to the sampling frequency,
perhaps because the sampling frequency also affects the smoothness
of the surrogate data. It is, nevertheless, worth noting that over- or
under-sampling may lead to spurious results.

That the proposed method can be applied to short time series sup-
ports its usefulness for the analysis of physiological or experimental
time series. It is, therefore, applicable to the analysis of time series
such as the EEG, in which maintaining stationarity for a long duration
is a difficult task.
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Postprocessing of 3-D Current Density Reconstruction
Results With Equivalent Ellipsoids

Marek Ziolkowski, Jens Haueisen*, and Uwe Leder

Abstract—A method of postprocessing and visualizing three–dimen-
sional vector fields, such as current density reconstruction results, is
presented. This method is based on equivalent ellipsoids fitted to the vector
fields. The technique has been tested with simulated data and current
density reconstructions based on bioelectromagnetic data obtained from a
physical thorax phantom. Three different approaches based on: 1) longest
distance; 2) dominant direction; and 3) principal component analysis,
for fitting the equivalent ellipsoids are proposed. Multiple foci in vector
fields are extracted by multiple ellipsoids which are fitted iteratively. The
method enables statistical postprocessing for the sake of comparisons of
different source reconstructions algorithms or comparisons of groups of
patients or volunteers.

Index Terms—Biomagnetics, biomedical electromagnetic imaging,
inverse problems, statistics, visualization.

I. INTRODUCTION

Current density reconstructions (CDRs) are used to assess cardiac
activation [1], [2] and brain function [3], [4] based on noninvasively
obtained magnetocardiogram (MCG), electrocardiogram (ECG),
magnetoencephalogram (MEG), and electroencephalogram (EEG)
data. CDRs are vector fields with each vector representing the current
density in a volume element or on a surface element. Often only
the magnitude maps of the CDRs are interpreted and represent the
end point of analysis. However, a parameterization of the CDRs to
facilitate statistical comparisons between data sets (from different
individuals or from one individual in different conditions or times)
would be desirable.

In a previous conference paper, we have introduced a parameteri-
zation technique for current density distributions which is based on
equivalent ellipsoids and applied to two–dimensional problems [5]. In
the current paper, we expand this technique to full three–dimensional
(3-D) problems, present an improved algorithm for the estimation of the
ellipsoids, compare a new principle component analysis (PCA) based
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